Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38456972

RESUMEN

INTRODUCTION: Non-invasive detection of pathological changes in thoracic aortic disease remains an unmet clinical need particularly for patients with congenital heart disease. Positron emission tomography combined with magnetic resonance imaging (PET-MRI) could provide a valuable low-radiation method of aortic surveillance in high-risk groups. Quantification of aortic microcalcification activity using sodium [18F]fluoride holds promise in the assessment of thoracic aortopathies. We sought to evaluate aortic sodium [18F]fluoride uptake in PET-MRI using three methods of attenuation correction compared to positron emission tomography computed tomography (PET-CT) in patients with bicuspid aortic valve, METHODS: Thirty asymptomatic patients under surveillance for bicuspid aortic valve disease underwent sodium [18F]fluoride PET-CT and PET-MRI of the ascending thoracic aorta during a single visit. PET-MRI data were reconstructed using three iterations of attenuation correction (Dixon, radial gradient recalled echo with two [RadialVIBE-2] or four [RadialVIBE-4] tissue segmentation). Images were qualitatively and quantitatively analysed for aortic sodium [18F]fluoride uptake on PET-CT and PET-MRI. RESULTS: Aortic sodium [18F]fluoride uptake on PET-MRI was visually comparable with PET-CT using each reconstruction and total aortic standardised uptake values on PET-CT strongly correlated with each PET-MRI attenuation correction method (Dixon R = 0.70; RadialVIBE-2 R = 0.63; RadialVIBE-4 R = 0.64; p < 0.001 for all). Breathing related artefact between soft tissue and lung were detected using Dixon and RadialVIBE-4 but not RadialVIBE-2 reconstructions, with the presence of this artefact adjacent to the atria leading to variations in blood pool activity estimates. Consequently, quantitative agreements between radiotracer activity on PET-CT and PET-MRI were most consistent with RadialVIBE-2. CONCLUSION: Ascending aortic microcalcification analysis in PET-MRI is feasible with comparable findings to PET-CT. RadialVIBE-2 tissue attenuation correction correlates best with the reference standard of PET-CT and is less susceptible to artefact. There remain challenges in segmenting tissue types in PET-MRI reconstructions, and improved attenuation correction methods are required.

2.
Radiol Cardiothorac Imaging ; 6(1): e230250, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38329405

RESUMEN

Purpose To assess periaortic adipose tissue attenuation at CT angiography in different abdominal aortic aneurysm disease states. Materials and Methods In a retrospective observational study from January 2018 to December 2022, periaortic adipose tissue attenuation was assessed at CT angiography in patients with asymptomatic or symptomatic (including rupture) abdominal aortic aneurysms and controls without aneurysms. Adipose tissue attenuation was measured using semiautomated software in periaortic aneurysmal and nonaneurysmal segments of the abdominal aorta and in subcutaneous and visceral adipose tissue. Periaortic adipose tissue attenuation values between the three groups were assessed using Student t tests and Wilcoxon rank sum tests followed by a multiregression model. Results Eighty-eight individuals (median age, 70 years [IQR, 65-78]; 78 male and 10 female patients) were included: 70 patients with abdominal aortic aneurysms (40 asymptomatic and 30 symptomatic, including 24 with rupture) and 18 controls. There was no evidence of differences in the periaortic adipose tissue attenuation in the aneurysmal segment in asymptomatic patients versus controls (-81.44 HU ± 7 [SD] vs -83.27 HU ± 9; P = .43) and attenuation in nonaneurysmal segments between asymptomatic patients versus controls (-75.43 HU ± 8 vs -78.81 HU ± 6; P = .08). However, symptomatic patients demonstrated higher periaortic adipose tissue attenuation in both aneurysmal (-57.85 HU ± 7; P < .0001) and nonaneurysmal segments (-58.16 HU ± 8; P < .0001) when compared with the other two groups. Conclusion Periaortic adipose tissue CT attenuation was not increased in stable abdominal aortic aneurysm disease. There was a generalized increase in attenuation in patients with symptomatic disease, likely reflecting the systemic consequences of acute rupture. Keywords: Abdominal Aortic Aneurysm, Periaortic Adipose Tissue Attenuation, CT Angiography ClinicalTrials.gov registration no. NCT02229006 © RSNA, 2024.


Asunto(s)
Aneurisma de la Aorta Abdominal , Anciano , Femenino , Humanos , Masculino , Tejido Adiposo/diagnóstico por imagen , Adiposidad , Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Angiografía por Tomografía Computarizada , Obesidad , Estudios Retrospectivos
3.
Heart ; 109(22): 1677-1682, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37164479

RESUMEN

OBJECTIVE: In patients with abdominal aortic aneurysms, sodium [18F]fluoride positron emission tomography identifies aortic microcalcification and disease activity. Increased uptake is associated with aneurysm expansion and adverse clinical events. The effect of endovascular aneurysm repair (EVAR) on aortic disease activity and sodium [18F]fluoride uptake is unknown. This study aimed to compare aortic sodium [18F]fluoride uptake before and after treatment with EVAR. METHODS: In a preliminary proof-of-concept cohort study, preoperative and post-operative sodium [18F]fluoride positron emission tomography-computed tomography angiography was performed in patients with an infrarenal abdominal aortic aneurysm undergoing EVAR according to current guideline-directed size treatment thresholds. Regional aortic sodium [18F]fluoride uptake was assessed using aortic microcalcification activity (AMA): a summary measure of mean aortic sodium [18F]fluoride uptake. RESULTS: Ten participants were recruited (76±6 years) with a mean aortic diameter of 57±2 mm at time of EVAR. Mean time from EVAR to repeat scan was 62±21 months. Prior to EVAR, there was higher abdominal aortic AMA when compared with the thoracic aorta (AMA 1.88 vs 1.2; p<0.001). Following EVAR, sodium [18F]fluoride uptake was markedly reduced in the suprarenal (ΔAMA 0.62, p=0.03), neck (ΔAMA 0.72, p=0.02) and body of the aneurysm (ΔAMA 0.69, p=0.02) while it remained unchanged in the thoracic aorta (ΔAMA 0.11, p=0.41). CONCLUSIONS: EVAR is associated with a reduction in AMA within the stented aortic segment. This suggests that EVAR can modify aortic disease activity and aortic sodium [18F]fluoride uptake is a promising non-invasive surrogate measure of aneurysm disease activity.


Asunto(s)
Aneurisma de la Aorta Abdominal , Implantación de Prótesis Vascular , Calcinosis , Procedimientos Endovasculares , Humanos , Aneurisma de la Aorta Abdominal/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/cirugía , Aneurisma de la Aorta Abdominal/etiología , Fluoruros , Reparación Endovascular de Aneurismas , Estudios de Cohortes , Implantación de Prótesis Vascular/métodos , Resultado del Tratamiento , Procedimientos Endovasculares/efectos adversos , Calcinosis/cirugía , Estudios Retrospectivos , Factores de Riesgo , Prótesis Vascular
4.
JACC Cardiovasc Imaging ; 15(7): 1291-1304, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35798405

RESUMEN

BACKGROUND: Acute aortic syndrome is associated with aortic medial degeneration. 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) detects microscopic tissue calcification as a marker of disease activity. OBJECTIVES: In a proof-of-concept study, this investigation aimed to establish whether 18F-NaF PET combined with computed tomography (CT) angiography could identify aortic medial disease activity in patients with acute aortic syndrome. METHODS: Patients with aortic dissection or intramural hematomas and control subjects underwent 18F-NaF PET/CT angiography of the aorta. Aortic 18F-NaF uptake was measured at the most diseased segment, and the maximum value was corrected for background blood pool activity (maximum tissue-to-background ratio [TBRmax]). Radiotracer uptake was compared with change in aortic size and major adverse aortic events (aortic rupture, aorta-related death, or aortic repair) over 45 ± 13 months. RESULTS: Aortic 18F-NaF uptake co-localized with histologically defined regions of microcalcification and elastin disruption. Compared with control subjects, patients with acute aortic syndrome had increased 18F-NaF uptake (TBRmax: 1.36 ± 0.39 [n = 20] vs 2.02 ± 0.42 [n = 47] respectively; P < 0.001) with enhanced uptake at the site of intimal disruption (+27.5%; P < 0.001). 18F-NaF uptake in the false lumen was associated with aortic growth (+7.1 mm/year; P = 0.011), and uptake in the outer aortic wall was associated with major adverse aortic events (HR: 8.5 [95% CI: 1.4-50.4]; P = 0.019). CONCLUSIONS: In patients with acute aortic syndrome, 18F-NaF uptake was enhanced at sites of disease activity and was associated with aortic growth and clinical events. 18F-NaF PET/CT holds promise as a noninvasive marker of disease severity and future risk in patients with acute aortic syndrome. (18F Sodium Fluoride PET/CT in Acute Aortic Syndrome [FAASt]; NCT03647566).


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Aorta/diagnóstico por imagen , Radioisótopos de Flúor , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones , Valor Predictivo de las Pruebas , Radiofármacos , Factores de Riesgo , Fluoruro de Sodio , Tomografía Computarizada por Rayos X
5.
EJNMMI Res ; 12(1): 33, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666397

RESUMEN

BACKGROUND: Aortic microcalcification activity is a recently described method of measuring aortic sodium [18F]fluoride uptake in the thoracic aorta on positron emission tomography. In this study, we aimed to compare and to modify this method for use within the infrarenal aorta of patients with abdominal aortic aneurysms. METHODS: Twenty-five patients with abdominal aortic aneurysms underwent an sodium [18F]fluoride positron emission tomography and computed tomography scan. Maximum and mean tissue-to-background ratios (TBR) and abdominal aortic microcalcification activity were determined following application of a thresholding and variable radius method to correct for vertebral sodium [18F]fluoride signal spill-over and the nonlinear changes in aortic diameter, respectively. Agreement between the methods, and repeatability of these approaches were assessed. RESULTS: The aortic microcalcification activity method was much quicker to perform than the TBR method (14 versus 40 min, p < 0.001). There was moderate-to-good agreement between TBR and aortic microcalcification activity measurements for maximum (interclass correlation co-efficient, 0.67) and mean (interclass correlation co-efficient, 0.88) values. These correlations sequentially improved with the application of thresholding (intraclass correlation coefficient 0.93, 95% confidence interval 0.89-0.95) and variable diameter (intraclass correlation coefficient 0.97, 95% confidence interval 0.94-0.99) techniques. The optimised method had good intra-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.36 and limits of agreement - 0.43 to 0.43) and inter-observer (mean 1.57 ± 0.42, bias 0.08, co-efficient of repeatability 0.47 and limits of agreement - 0.53 to 0.53) repeatability. CONCLUSIONS: Aortic microcalcification activity is a quick and simple method which demonstrates good intra-observer and inter-observer repeatabilities and provides measures of sodium [18F]fluoride uptake that are comparable to established methods.

6.
Eur Heart J Cardiovasc Imaging ; 23(12): 1698-1707, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-35666823

RESUMEN

AIMS: The influence haemodynamics have on vessel wall pathobiology in aortic disease is incomplete. This aim of this study was to develop a repeatable method for assessing the relationship between aortic wall shear stress (WSS) and disease activity by fusing 4D flow cardiovascular magnetic resonance (CMR) with hybrid positron emission tomography (PET). METHODS AND RESULTS: As part of an ongoing clinical trial, patients with bicuspid aortic valve (BAV) were prospectively imaged with both 18F-sodium fluoride (18F-NaF) PET, a marker of calcification activity, and 4D flow CMR. We developed novel software allowing accurate 3D co-registration and high-resolution comparison of aortic peak systolic WSS and 18F-NaF PET uptake (maximum tissue-to-background ratio). Intra-observer repeatability of both measurements was determined using Bland-Altman plots and intra-class correlation coefficients (ICCs). The relationship between localized WSS and 18F-NaF uptake was analysed using linear mixed-effect models. Twenty-three patients with BAV (median age 50 [44-55] years, 22% female) were included. Intra-observer repeatability for WSS (ICC = 0.92) and 18F-NaF (ICC = 0.91) measurements obtained within 1.4 ± 0.6 cm2 regions of interest was excellent. On multivariable analysis, 18F-NaF PET uptake was independently and negatively associated with WSS as well as diastolic blood pressure (both P < 0.05), adjusted for age. CONCLUSION: Fused assessment of WSS and 18F-NaF PET uptake is feasible and repeatable, demonstrating a clear association between these two factors. This high spatial resolution approach has major potential to advance our understanding of the relationship between vascular haemodynamics and disease activity.


Asunto(s)
Aorta Torácica , Enfermedad de la Válvula Aórtica Bicúspide , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aorta , Aorta Torácica/patología , Válvula Aórtica/patología , Fenómenos Biomecánicos , Velocidad del Flujo Sanguíneo , Estudios Prospectivos
7.
Arterioscler Thromb Vasc Biol ; 42(8): 1048-1059, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770666

RESUMEN

BACKGROUND: Patients with thoracic aortopathy are at increased risk of catastrophic aortic dissection, carrying with it substantial mortality and morbidity. Although granular medial calcinosis (medial microcalcification) has been associated with thoracic aortopathy, its relationship to disease severity has yet to be established. METHODS: One hundred one thoracic aortic specimens were collected from 57 patients with thoracic aortopathy and 18 control subjects. Standardized histopathologic scores, immunohistochemistry, and nanoindentation (tissue elastic modulus) were compared with the extent of microcalcification on von Kossa histology and 18F-sodium fluoride autoradiography. RESULTS: Microcalcification content was higher in thoracic aortopathy samples with mild (n=28; 6.17 [2.71-10.39]; P≤0.00010) or moderate histopathologic degeneration (n=30; 3.74 [0.87-11.80]; P<0.042) compared with control samples (n=18; 0.79 [0.36-1.90]). Alkaline phosphatase (n=26; P=0.0019) and OPN (osteopontin; n=26; P=0.0045) staining were increased in tissue with early aortopathy. Increasingly severe histopathologic degeneration was related to reduced microcalcification (n=82; Spearman ρ, -0.51; P<0.0001)-a process closely linked with elastin loss (n=82; Spearman ρ, -0.43; P<0.0001) and lower tissue elastic modulus (n=28; Spearman ρ, 0.43; P=0.026).18F-sodium fluoride autoradiography demonstrated good correlation with histologically quantified microcalcification (n=66; r=0.76; P<0.001) and identified areas of focal weakness in vivo. CONCLUSIONS: Medial microcalcification is a marker of aortopathy, although progression to severe aortopathy is associated with loss of both elastin fibers and microcalcification.18F-sodium fluoride positron emission tomography quantifies medial microcalcification and is a feasible noninvasive imaging modality for identifying aortic wall disruption with major translational promise.


Asunto(s)
Calcinosis , Elastina , Aorta , Calcinosis/diagnóstico por imagen , Humanos , Índice de Severidad de la Enfermedad , Fluoruro de Sodio
8.
JACC Cardiovasc Imaging ; 15(5): 875-887, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35216930

RESUMEN

OBJECTIVES: The aim of this study was to describe the potential of 18F-sodium fluoride (18F-NaF) positron emission tomography (PET) to identify graft vasculopathy and to investigate the influence of coronary artery bypass graft (CABG) surgery on native coronary artery disease activity and progression. BACKGROUND: As well as developing graft vasculopathy, CABGs have been proposed to accelerate native coronary atherosclerosis. METHODS: Patients with established coronary artery disease underwent baseline 18F-NaF PET, coronary artery calcium scoring, coronary computed tomographic angiography, and 1-year repeat coronary artery calcium scoring. Whole-vessel coronary microcalcification activity (CMA) on 18F-NaF PET and change in calcium scores were quantified in patients with and without CABG surgery. RESULTS: Among 293 participants (mean age 65 ± 9 years, 84% men), 48 (16%) underwent CABG surgery 2.7 years [IQR: 1.4-10.4 years] previously. Although all arterial and the majority (120 of 128 [94%]) of vein grafts showed no 18F-NaF uptake, 8 saphenous vein grafts in 7 subjects had detectable CMA. Bypassed native coronary arteries had 3 times higher CMA values (2.1 [IQR: 0.4-7.5] vs 0.6 [IQR: 0-2.7]; P < 0.001) and greater progression of 1-year calcium scores (118 Agatston unit [IQR: 48-194 Agatston unit] vs 69 [IQR: 21-142 Agatston unit]; P = 0.01) compared with patients who had not undergone CABG, an effect confined largely to native coronary plaques proximal to the graft anastomosis. In sensitivity analysis, bypassed native coronary arteries had higher CMA (2.0 [IQR: 0.4-7.5] vs 0.8 [IQR: 0.3-3.2]; P < 0.001) and faster disease progression (24% [IQR: 16%-43%] vs 8% [IQR: 0%-24%]; P = 0.002) than matched patients (n = 48) with comparable burdens of coronary artery disease and cardiovascular comorbidities in the absence of bypass grafting. CONCLUSIONS: Native coronary arteries that have been bypassed demonstrate increased disease activity and more rapid disease progression than nonbypassed arteries, an observation that appears independent of baseline atherosclerotic plaque burden. Microcalcification activity is not a dominant feature of graft vasculopathy.


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Placa Aterosclerótica , Anciano , Calcio , Angiografía Coronaria , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Fluoruro de Sodio
9.
JACC Cardiovasc Imaging ; 15(7): 1274-1288, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35183477

RESUMEN

BACKGROUND: Aortic atherosclerosis represents an important contributor to ischemic stroke risk. Identifying patients with high-risk aortic atheroma could improve preventative treatment strategies for future ischemic stroke. OBJECTIVES: The purpose of this study was to investigate whether thoracic 18F-sodium fluoride positron emission tomography (PET) could improve the identification of patients at the highest risk of ischemic stroke. METHODS: In a post hoc observational cohort study, we quantified thoracic aortic and coronary 18F-sodium fluoride activity in 461 patients with stable cardiovascular disease undergoing PET combined with computed tomography (CT). Progression of atherosclerosis was assessed by change in aortic and coronary CT calcium volume. Clinical outcomes were determined by the occurrence of ischemic stroke and myocardial infarction. We compared the prognostic utility of 18F-sodium fluoride activity for predicting stroke to clinical risk scores and CT calcium quantification using survival analysis and multivariable Cox regression. RESULTS: After 12.7 ± 2.7 months, progression of thoracic aortic calcium volume correlated with baseline thoracic aortic 18F-sodium fluoride activity (n = 140; r = 0.31; P = 0.00016). In 461 patients, 23 (5%) patients experienced an ischemic stroke and 32 (7%) a myocardial infarction after 6.1 ± 2.3 years of follow-up. High thoracic aortic 18F-sodium fluoride activity was strongly associated with ischemic stroke (HR: 10.3 [95% CI: 3.1-34.8]; P = 0.00017), but not myocardial infarction (P = 0.40). Conversely, high coronary 18F-sodium fluoride activity was associated with myocardial infarction (HR: 4.8 [95% CI: 1.9-12.2]; P = 0.00095) but not ischemic stroke (P = 0.39). In a multivariable Cox regression model including imaging and clinical risk factors, thoracic aortic 18F-sodium fluoride activity was the only variable associated with ischemic stroke (HR: 8.19 [95% CI: 2.33-28.7], P = 0.0010). CONCLUSIONS: In patients with established cardiovascular disease, thoracic aortic 18F-sodium fluoride activity is associated with the progression of atherosclerosis and future ischemic stroke. Arterial 18F-sodium fluoride activity identifies localized areas of atherosclerotic disease activity that are directly linked to disease progression and downstream regional clinical atherothrombotic events. (DIAMOND-Dual Antiplatelet Therapy to Reduce Myocardial Injury [DIAMOND], NCT02110303; Study Investigating the Effect of Drugs Used to Treat Osteoporosis on the Progression of Calcific Aortic Stenosis [SALTIRE II], NCT02132026; Novel Imaging Approaches To Identify Unstable Coronary Plaques, NCT01749254; and Role of Active Valvular Calcification and Inflammation in Patients With Aortic Stenosis, NCT01358513).


Asunto(s)
Estenosis de la Válvula Aórtica , Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Placa Aterosclerótica , Accidente Cerebrovascular , Calcio , Radioisótopos de Flúor , Humanos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Valor Predictivo de las Pruebas , Radiofármacos , Fluoruro de Sodio , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/etiología
10.
J Nucl Cardiol ; 29(3): 1372-1385, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33474695

RESUMEN

BACKGROUND: Standard methods for quantifying positron emission tomography (PET) uptake in the aorta are time consuming and may not reflect overall vessel activity. We describe aortic microcalcification activity (AMA), a novel method for quantifying 18F-sodium fluoride (18F-NaF) uptake in the thoracic aorta. METHODS: Twenty patients underwent two hybrid 18F-NaF PET and computed tomography (CT) scans of the thoracic aorta less than three weeks apart. AMA, as well as maximum (TBRmax) and mean (TBRmean) tissue to background ratios, were calculated by two trained operators. Intra-observer repeatability, inter-observer repeatability and scan-rescan reproducibility were assessed. Each 18F-NaF quantification method was compared to validated cardiovascular risk scores. RESULTS: Aortic microcalcification activity demonstrated excellent intra-observer (intraclass correlation coefficient 0.98) and inter-observer (intraclass correlation coefficient 0.97) repeatability with very good scan-rescan reproducibility (intraclass correlation coefficient 0.86) which were similar to previously described TBRmean and TBRmax methods. AMA analysis was much quicker to perform than standard TBR assessment (3.4min versus 15.1min, P<0.0001). AMA was correlated with Framingham stroke risk scores and Framingham risk score for hard cononary heart disease. CONCLUSIONS: AMA is a simple, rapid and reproducible method of quantifying global 18F-NaF uptake across the ascending aorta and aortic arch that correlates with cardiovascular risk scores.


Asunto(s)
Calcinosis , Radioisótopos de Flúor , Aorta Torácica/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Fluoruro de Sodio
11.
13.
J Nucl Cardiol ; 28(2): 481-491, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33175301

RESUMEN

Calcific aortic valve disease is the most common valvular disease and confers significant morbidity and mortality. There are currently no medical therapies that successfully halt or reverse the disease progression, making surgical replacement the only treatment currently available. The majority of patients will receive a bioprosthetic valve, which themselves are prone to degeneration and may also need replaced, adding to the already substantial healthcare burden of aortic stenosis. Echocardiography and computed tomography can identify late-stage manifestations of the disease process affecting native and bioprosthetic aortic valves but cannot detect or quantify early molecular changes. 18F-fluoride positron emission tomography, on the other hand, can non-invasively and sensitively assess disease activity in the valves. The current review outlines the pivotal role this novel molecular imaging technique has played in improving our understanding of native and bioprosthetic aortic valve disease, as well as providing insights into its feasibility as an important future research and clinical tool.


Asunto(s)
Estenosis de la Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Bioprótesis/efectos adversos , Calcinosis/cirugía , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/cirugía , Radioisótopos de Flúor/farmacocinética , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Fluoruro de Sodio/farmacocinética
14.
Circulation ; 141(19): 1570-1587, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32392100

RESUMEN

Inherited thoracic aortopathies denote a group of congenital conditions that predispose to disease of the thoracic aorta. Aortic wall weakness and abnormal aortic hemodynamic profiles predispose these patients to dilatation of the thoracic aorta, which is generally silent but can precipitate aortic dissection or rupture with devastating and often fatal consequences. Current strategies to assess the future risk of aortic dissection or rupture are based primarily on monitoring aortic diameter. However, diameter alone is a poor predictor of risk, with many patients experiencing dissection or rupture below current intervention thresholds. Developing tools that improve the risk assessment of those with aortopathy is internationally regarded as a research priority. A robust understanding of the molecular pathways that lead to aortic wall weakness is required to identify biomarkers and therapeutic targets that could improve patient management. Here, we summarize the current understanding of the genetically determined mechanisms underlying inherited aortopathies and critically appraise the available blood biomarkers, imaging techniques, and therapeutic targets that have shown promise for improving the management of patients with these important and potentially fatal conditions.


Asunto(s)
Aorta Torácica , Aneurisma de la Aorta Torácica/genética , Disección Aórtica/genética , Rotura de la Aorta/genética , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/fisiopatología , Disección Aórtica/terapia , Animales , Aorta Torácica/metabolismo , Aorta Torácica/patología , Aorta Torácica/fisiopatología , Aorta Torácica/cirugía , Aneurisma de la Aorta Torácica/diagnóstico por imagen , Aneurisma de la Aorta Torácica/fisiopatología , Aneurisma de la Aorta Torácica/terapia , Rotura de la Aorta/diagnóstico por imagen , Rotura de la Aorta/fisiopatología , Rotura de la Aorta/terapia , Biomarcadores/metabolismo , Predisposición Genética a la Enfermedad , Humanos , Terapia Molecular Dirigida , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico , Medición de Riesgo , Factores de Riesgo , Transducción de Señal , Investigación Biomédica Traslacional , Procedimientos Quirúrgicos Vasculares
15.
Br J Radiol ; 92(1103): 20180309, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502858

RESUMEN

Atherosclerosis is a chronic immunomodulated disease that affects multiple vascular beds and results in a significant worldwide disease burden. Conventional imaging modalities focus on the morphological features of atherosclerotic disease such as the degree of stenosis caused by a lesion. Modern CT, MR and positron emission tomography scanners have seen significant improvements in the rapidity of image acquisition and spatial resolution. This has increased the scope for the clinical application of these modalities. Multimodality imaging can improve cardiovascular risk prediction by informing on the constituency and metabolic processes within the vessel wall. Specific disease processes can be targeted using novel biological tracers and "smart" contrast agents. These approaches have the potential to inform clinicians of the metabolic state of atherosclerotic plaque. This review will provide an overview of current imaging techniques for the imaging of atherosclerosis and how various modalities can provide information that enhances the depiction of basic morphology.


Asunto(s)
Aterosclerosis/diagnóstico , Diagnóstico por Imagen/tendencias , Enfermedades de la Aorta/diagnóstico , Enfermedades de las Arterias Carótidas/diagnóstico , Medios de Contraste , Enfermedad Coronaria/diagnóstico , Humanos , Angiografía por Resonancia Magnética/tendencias , Espectroscopía de Resonancia Magnética , Nanopartículas de Magnetita , Imagen Molecular/tendencias , Espectrofotometría Infrarroja/tendencias , Tomografía de Coherencia Óptica/tendencias , Tomografía Computarizada por Rayos X/tendencias , Ultrasonografía Intervencional/tendencias , Calcificación Vascular/diagnóstico
16.
Trends Cardiovasc Med ; 29(8): 440-448, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30611605

RESUMEN

Inflammation affects the aortic wall through complex pathways that alter its biomechanical structure and cellular composition. Inflammatory processes that predominantly affect the intima cause occlusive disease whereas medial inflammation and degeneration cause aneurysm formation. Aortic inflammatory pathways share common metabolic features that can be localized by smart contrast agents and radiolabelled positron emission tomography (PET) tracers. 18F-Fluorodeoxyglucose (18F-FDG) is a non-specific marker of metabolism and has been widely used to study aortic inflammation in various diseased aortic states. Although useful in detecting disease, 18F-FDG has yet to demonstrate a reliable link between vessel wall disease and clinical progression. 18F-Sodium fluoride (18F-NaF) is a promising biological tracer that detects microcalcification related to active disease and cellular necrosis within the vessel wall. 18F-NaF shows a high affinity to bind to diseased arterial tissue irrespective of the underlying inflammatory process. In abdominal aortic aneurysms, 18F-NaF PET/CT predicts increased rates of growth and important clinical end-points, such as rupture or the requirement for repair. Much work remains to be done to bridge the gap between detecting aortic inflammation in at-risk individuals and predicting adverse clinical events. Novel radiotracers may hold the key to improve our understanding of vessel wall biology and how this relates to patients. Combined with established clinical and morphological assessment techniques, PET imaging promises to improve disease detection and clinical risk stratification.


Asunto(s)
Aneurisma de la Aorta/diagnóstico por imagen , Aortitis/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Aneurisma de la Aorta/fisiopatología , Aneurisma de la Aorta/terapia , Aortitis/fisiopatología , Aortitis/terapia , Fluorodesoxiglucosa F18/administración & dosificación , Humanos , Valor Predictivo de las Pruebas , Pronóstico , Radiofármacos/administración & dosificación , Fluoruro de Sodio/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...